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1. INTRODUCTION

An increasingly important advancement waiting to
happen in brain-computing technologies is interfacing
with speech in the mind. As fluency and dependence
on technology raises the demands for faster, cleaner,
and more productive interfaces, the pathways such an
accomplishment would pave in the scope of our com-
municative abilities would lead to a revolution in our
natural and digital interaction with the world.

Advancements in imagined speech technologies is suf-
fering from evading a holistic approach to understand-
ing how we can read and interpret language in the
mind. Current research in this field is producing a
limited and acute set of tools to systemize far too spe-
cific instances of a task, such as classifying ”yes” and
”no”. Not only are these studies archetypal cases of
over fitting to the details of the experiment with which
they were run under, but they encourage an outlook for
studying imagined speech that is myopic and fails to
represent the complexity of the task, for any solution to
this problem must be scalable to large groups of people
and preferably multiple languages.

The shortcomings of imagined speech research, how-
ever, are not wholly unexpected. Given our severely
limited neurological understanding of what conscious
thoughts are and how imagined speech is carried by this
mechanism, it is near impossible to make assumptions
and predictions about the structure of EEG data that
attempts to measure them. Also, whereas other imag-
ined actions such as spacial movements are lateralized
to one hemisphere over the other, imagined speech has
equal levels of significant activity in both hemispheres.

This paper does not proclaim to overcome this chal-
lenge. What it does do is attempt to engage with and
reason through an experiment that breaks through the
mold of treating imagined speech studies as applica-
tion oriented exercises and highlights what models and
approaches may yield the best insights in the future of
this promising field.

1.1 Approach

An approach to understanding imagined speech using
EEG needs to be foundational and scalable. It needs
to model a system from EEG data just as a natural

language is understood in common use. For this reason
we pursued the paradigm that phonetic qualities of
words affect how their associated syntactic rudiments
are stored in the brain, where it follows that language
as thought in the mind is being produced with some
correlation to how the language was learnt and under-
stood on first basis. Given this hypothesis, the role of
machine learning in imagined speech classification is to
tailor models that can evaluate and predict syntactic
features.

The focus of our research, then, is to discuss how
multiple syllables can be classified between each other
with the ambition in future research that accurate clas-
sifications of syllables will allow predictions of arbitrary
strings of them (or words). It is no less than a beauty
that a finite number of syllables give rise to the entire
breadth of a language.

We will thus explore two machine learning approaches
to do this task. The first includes using KNN and Naive
Bayes to examine how we can build a model out of el-
ementary features of the data, and the second involves
the use of artificial neural networks to seek nonlinear
patterns for prediction.

2. EXPERIMENT

We created our own data set by making use of Takako
Fujioka’s EEG lab at the Center for Computer Research
in Music and Acoustics (CCRMA). We used a 10-20
system EEG with 64 channels covering the entirety of
the subjects head. Three additional nodes tracked eye
and upper-facial movements to assist removing blinking
and face movement artifacts from the data. The EEG
sampled at a rate of 500HZ.

A subject was asked to imagine speaking the pair of
syllables ’ba’ / ’ku’ and ’im’ / ’si’ alternating between
trials. A low and a high pitch tone were predecided
before the experiment to correspond to the the pair of
syllables, the lower tone corresponding to ’ba’ or ’im’
and the upper tone corresponding to ’ku’ or ’si’. In
one round of readings, 200 trials of a syllable pair, 100
of each syllable, were mixed randomly and presented
to the subject as the tones. After a short break, the
experiment was repeated with the other pair of sylla-
bles. We then performed the first pair again in another
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round and the second pair in the next. In total, 200
readings each of ’ba’, ’ku’, ’im’, and ’si’ were collected.

The length of the queuing sound lasted for 0.2 sec-
onds, enough to perceive the pitch but not too long
that response to the tone interferes with thinking. The
subject was given 2.5 seconds and asked to utter the
correct syllable once, after which he was asked to rest
his mind until the next beep is heard.

A time line for a single trial for the syllable pair (’ba’,
’ku’) is shown below:

The obtained EEG data contained the presence of
artifacts from blinking and facial muscle contractions.
The EEG data was preprocessed to remove these ar-
tifacts in EEGLAB. The electromyographic artifacts
were removed and the signals from electrodes closest
to the ear / neck discarded. Data processing identi-
fied that 134 of the 800 trials recorded were too noisy,
mostly in the pair of trials ’ba’ / ’ku’. The results for
’im’ / ’si’ were accordingly given greater significance.

After processing out the artifacts, we trimmed out
each trial to the length of the relevant data. Given
that it takes a regular subject approximately 0.5 sec-
onds to imagine speaking the syllable, we trebled that
time frame to include the decision process, imagination,
and decline of the thought signal, so we reduced each
trial to 0.2 to 1.7 of the original signal starting at 0.0.

Note that by deciding to include the part of the sig-
nal where the subject is simultaneously reacting to
the sound and deciding which syllable correctly cor-
responds to its pitch, we have inadvertently created
a separating criterion that allows a machine learning
model to classify the trials based on the brain response
to the pitch. This is a nontrivial complication that
is not accounted for in most syllable studies, but for
which we have considered by making multiclass classi-
fications that include classifications between syllables

that were imagined with the same pitch.

3. FEATURES

3.1 Mean Feature Extractor

Perhaps the most natural extractor is to approximate
each wave with a series of points that are averages of a
segment at the point’s position. This is principally use-
ful because the feature space considering every record-
ing of the wave for all 64 channels would amount to a
feature dimension that is too large and would overfit
the data. We also use this feature extractor because it
is neurologically relevant and can be used to identify
Event-Related Potentials (ERPs) and other character-
istic motifs by identifying points and times that are
especially informative of the class.

The mean feature extractor also provides an intuitive
way of producing canonical syllable waves with higher
signal-to-noise ratio by averaging all trials of a syllable
together. This will be useful in making measurements
of deviation of the individual trials from a representa-
tive. The figure below shows a wave from a channel
which is divided into 8 parts and averaged with all
trials of the class.

So if ch(i,j) represents the value of point j in chan-
nel i, then the feature vector is
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[ch(1,1), ..., ch(1,8), ch(2,1), ..., ch(64,8)][y ∈ [1, 2, 3, 4]]

which has 64 × 8 = 512 dimensions. We use the nota-
tion y = 1 to donate ba, y = 2 to donate ku and so
on.

3.2 Discrete Wavelet Transform

We also extracted the wavelet coefficients by decompos-
ing the EEG signal using a Discrete Wavelet Transform
(DWT). DWT has proven useful in characterizing the
signals of EEG data because it uses non-stationary time
series analysis and leads to good time-frequency local-
ization by using longer time windows at low frequencies
and vice-versa. Since the transform leads to an exces-
sively large coefficient space, we performed Principal
Component Analysis independently on each of the ap-
proximation matrix, first level horizontal and vertical
images of the transform to produce a smaller four di-
mensional space. Each point was the coefficients of a
channel wave with number of dimensions equal to the
length of the transformed signal. The projection then
represents the space of coefficients that best character-
ize the transformed signal.

4. CLASSIFICATION

4.1 K Nearest Neighbors

Using K Nearest Neighbors (KNN) allows us to make
inferences about how distinct the syllables are from
each other. It is useful as a measure of how successful
our feature space is in drawing out salient linear fea-
tures of the classes. If KNN classifies accurately, than
the syllables partition the feature space into Voronoi
cells with boundaries that have neurological signifi-
cance for why they distinguish syllables. If KNN is less
predictive then we know that nonlinear patterns are
needed for more effect.

We run a modified KNN where each trial is assigned
to the averaged wave form of the four syllables it is
closest to. This is so that we can measure how noisy an
individual trial is with respect to an ideal of its class.
For a given trial wi, we assign to wi

argmins∈[baavg,kuavg,imavg,siavg]D(φ(wi), φ(s))

where D(φ(w)i, s) is the Euclidean distance metric be-
tween the feature extraction φ of wi and a class-average
syllable.

ba ku im si

Accuracy 0.2875 0.4932 0.5000 0.2384

Table 1: Multiclass KNN

The results for KNN are promising but not ideal.
’ku’ and ’im’ are being classified at rates significantly
better than random (25%), but the prediction rates for
’ba’ and ’si’ are insignificant. Since one syllable in the
two trials performs well and the other doesn’t, it leads
suspect that biases between conjoining the two experi-
ments are leading to this symmetrical result.

4.2 Naive Bayes

Naive Bayes can overcome some of the biases in KNN
by generating a model for each class independently.
Essentially, the Naive Bayes assumption in this case
means that a wave is characterized by its amplitudes
and that syllables are matched to sample waves that
have the right registers.

The parameters for each class are given as l = 1, 2, 3, 4,
so

φk|y=l =
∑m

i=1

∑ni
j=1 1{x(i)

j =k∧y(i)=l}+1∑m
i=1 1{y(i)=l}ni+|V |

where V is the size of the feature extracted signal and

φy=l =
∑m

i=1 1y(i)=l

m

After the parameters and probabilities are trained,
we make estimates for test cases using max-likelihood
statistics. We then use 5-fold cross validation to get
test predictions.

ba ku im si

Accuracy 0.6966 0.4420 0.6666 0.6855

Table 2: Multiclass Naive Bayes

4.3 Neural Networks

In artificial neural networks, the burden of making
assumptions about the structure of the data is trans-
ferred to the training of hidden layers that solve ”sub-
problems” of the given input. This allows us to find
nonlinear relationships of features along and between
channels that can offer greater predictive power than
the earlier models discussed.
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The number of inputs is the size of the feature vec-
tor used. The hidden layers are linear weighted sub-
problems over a sigmoid activation function. If wi is a
signal, for each hidden unit hj ,

hj = σ(vj · φ(wi))

with vj a learned weight and logistic activation function

σ(z) = (1 + e−z)−1

We trained a feedforward network using a scaled conju-
gate gradient backpropagation to update the weights
and measured performance using cross entropy. We
evaluated the performance on different size hidden lay-
ers and found that a hidden layer of size 6 maximizes
the training and test performance. 85% of the trials
were used for training and 15% of the trials were held
out for testing.

ba ku im si

Accuracy 0.8125 0.7260 0.7528 0.9302

Table 3: Multiclass Neural Networks

5. ANALYSIS

An 81.9% overall classification rate for neural networks
is stunning and far exceeds results of similar studies
in the field, which generally have prediction accuracies
between 60% and 70% and often times on binary clas-
sifiers. Below is a confusion matrix for the four class
classification of syllables ’ba’, ’ku’, ’im’, and ’si’ in that
order:

A classification of 81.9% on the entire data set with
87.8% training accuracy and 66.7% testing accuracy is
suffers from mild overfitting but not to excess. The suc-
cess of neural networks suggest that the most predictive
features occur in patterned combinations that are not
immediately identifiable with single feature expansions.

The neural network with hidden layer of size 6 also
worked remarkably well in binary classification of the
syllable pair ’im’ and ’si’.

This is not surprising given the success of the multi-
class classifier. Note, however, that the network scaled
to the multiclass case because the number of correct
predictions in the binary and multiclass classifier are
not too distinct.

The neural network also classifies the pair of sylla-
bles ’ba’ and ’im’ that were recorded in response to
the same pitch with equal accuracy, which is especially
interesting because now the nature of the experimental
data has changed (gathered from independent rounds
of measurement).
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Unlike the Naive Bayes and KNN classifiers, the neural
networks performed consistently well on the variety of
cases tested on, whereas Naive Bayes and KNN did not
scale as well when they classified four syllables instead
of two. This is noticeable comparing the charts of bi-
nary and multiple classifications of the models studied.

6. FUTURE WORK

Neural networks should be further studied for their po-
tential to uncover neural patterns that we do not know
from existing neurological sources. We note informally
that a hidden layer of size 6 was the optimal size for all
cases studied with neural networks in this experiment,
and that this warrants special attention for it reflects
on a level of patterns implicit in the data and in the
functional sites of the brain it originated from.

Given the success of multiple classification of four sylla-
bles, we further propose that neural networks be tested
against more a wider range of syllables and that resting

state EEG data is used for control experiments. We
think that the accuracy reported in this paper is be-
yond that expected for given past results in the field,
and that further experiment should be conducted on a
larger data set including multiple subjects.

An ideal approach to imagined speech and general
BCI applications can encompass new functionality, and
many of the approaches traditionally used, especially
support vector machines, do not have the representa-
tional mechanics to pursue general imagined speech
understanding and expansive BCI needs. Neural net-
works are versatile tools for modelling networks of sizes
that grow, alter and expand, and we believe that they
show promising hopes for elucidating brain data.
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